Deep learning y teoría de redes

Como hemos ido viendo en esta Web, el uso de GPUs y nuevos modelos de deep learning ha logrado grandes avances en visión artificial, procesamiento de lenguaje, juegos, etc. Para ello han sido clave modelos de redes neuronales multicapa, RNNs, CNNs y posteriormente transformers basados en el mecanismo de atención. Por otro lado, en la... Seguir leyendo →

Modelos discriminativos y generativos en deep learning

Una pregunta que siempre nos planteamos en machine learning y en deep learning es la diferencia entre algoritmos discriminativos y generativos y cuál escoger para un problema concreto. Los algoritmos discriminativos modelan la dependencia de una variable objetivo Y  en función de una variable observada X.  De esta forma se puede predecir la variable Y ... Seguir leyendo →

Curso Deep learning con PyTorch

Con el objetivo de divulgar el uso de PyTorch como herramienta de deep learning, hemos creado una serie de tutoriales para introducir PyTorch y sus principales módulos. A continuación se puede ver un listado con las partes del curso: Programación orientada a objetos en PyTorch.Tensores en PyTorch.Almacenamiento de tensores en PyTorch.Módulo de redes neuronales.Optimización en... Seguir leyendo →

Almacenamiento de tensores en PyTorch

Como hemos visto, los tensores son un elemento básico en PyTorch. Son los elementos de diferente rango (escalares, vectores, matrics, etc.) que contienen la información en PyTorch y sobre los que actúan los modelos. Sin embargo, a pesar de su rango y dimensiones, los tensores se almacenan en memoria en un array unidimensional de elementos... Seguir leyendo →

Hooks en PyTorch

En programación, nos referimos a un hook como el conjunto de técnicas que modifican o aumentan el comportamiento de un programa ante un evento. Esto suele usarse para depurar un programa o ampliar su funcionalidad. En PyTorch, un hook se puede registrar para el objeto tensor o para el objeto nn.module y los eventos que... Seguir leyendo →

Creando nuevas funciones en PyTorch

En este post de nuestro tutorial de deep learning con PyToch vamos a ver como extender PyTorch. Si quieremos implementar un nuevo módulo o función no disponible en las librerías de PyTorch tenemos varias opciones dependiendo del caso: Si queremos añadir primitivas clásicas (if, while,...) en un módulo, simplemente insertaremos las primitivas en el método... Seguir leyendo →

Reproducibilidad de los modelos en deep learning

En los modelos de deep learning puede haber varias fuentes de aleatoriedad. Los parámetros del modelo, algunos vectores iniciales y algunas variables auxiliares pueden requerir un valor inicial aleatorio. Por ello, es necesario realizar ciertas acciones para que los modelos tengan la máxima reproducibilidad y el modelo se comporte igual en diferentes ejecuciones. Lo primero... Seguir leyendo →

Graph Neural Networks con PyTorch Geometric

En este post vamos a ver una introducción a las Graph Neural Networks (GNNs) y la librería PyTorch Geometric, que nos permite aplicar el deep learning a datos no estructurados, como grafos, empleando este tipo de modelos. Las GNNs permiten aplicar redes neuronales a grafos, teniendo en cuenta su estructura basada en nodos conectados entre... Seguir leyendo →

Mecanismos de atención y sistemas complejos

En posts pasados hemos visto cómo funcionan los mecanismos de atención y como han supuesto un fuerte avance en el campo del deep learning. En el cerebro, los mecanismos de atención permiten al cerebro centrarse en una parte de la entrada (imagen, texto, cualquier percepción) y darle menos atención a otras. Esta es una función muy importante... Seguir leyendo →

Orgullosamente ofrecido por WordPress | Tema: Baskerville 2 por Anders Noren.

Subir ↑