Librería PyTorch-NLP para procesamiento de lenguaje

Esta entrada es parte del curso de Deep learning con PyTorch. En este post vamos a ver la librería PyTorch-NLP, una librería abierta para procesamiento de lenguaje natural basada en PyTorch y que viene con módulos interesantes de datasets, embeddings preentrenados, codificadores de texto, redes neuronales, etc. El paquete torchnlp.datasets tiene módulos para descargar, almacenar... Seguir leyendo →

Introducción a los mecanismos de atención

En este post vamos a hacer una introducción al mecanismo de atención usado en modelos seq2seq de deep learning y concretamente en procesamiento de lenguaje natural. La descripción va a tener el nivel de detalle suficiente para que se entienda la esencia y el concepto de atención. Los modelos seq2seq (sentence to sentence), utilizados para... Seguir leyendo →

Perspectivas del deep symbolic learning

La historia de la inteligencia artificial siempre ha estado marcada por el debate entre el enfoque simbólico y el enfoque conexionista. Este debate ha marcado las distintas etapas del machine learning y del procesamiento del lenguaje natural: Un primer período a partir de los años 50 marcado por el Test de Turing, el racionalismo y... Seguir leyendo →

Nueva sección de Machine learning & Business

El machine learning está posibilitando y va a posibilitar grandes oportunidades tanto para el sector público como privado. La transición de la investigación y desarrollo en machine learning a casos de negocio concretos es un proceso delicado que va más allá de lo puramente técnico. Hemos creado una nueva sección dedicada a todos los aspectos... Seguir leyendo →

Word embeddings y skip-gram

En posts anteriores vimos que las representaciones distribuidas de las palabras permiten extraer mucha información y han mejorado el rendimiento de las aplicaciones de procesamiento de lenguaje natural. Los Word embeddings son un claro ejemplo de la importancia y el potencial del aprendizaje no supervisado de representaciones. A partir de un cuerpo de texto de... Seguir leyendo →

Ejemplo de Word Embeddings con Gensim

En posts anteriores vimos como las representaciones distribuidas permiten extraer mucha información de las palabras y mejorar el rendimiento de las aplicaciones de procesamiento de lenguaje natural. Uno de los modelos más usados es Word2vec, creado en 2013 por Tomas Mikolov en Google, que se basa en redes neuronales de varias capas y tiene dos... Seguir leyendo →

Orgullosamente ofrecido por WordPress | Tema: Baskerville 2 por Anders Noren.

Subir ↑