En posts anteriores vimos que las representaciones distribuidas de las palabras permiten extraer mucha información y han mejorado el rendimiento de las aplicaciones de procesamiento de lenguaje natural. Los Word embeddings son un claro ejemplo de la importancia y el potencial del aprendizaje no supervisado de representaciones. A partir de un cuerpo de texto de... Seguir leyendo →
Ejemplo de Word Embeddings con Gensim
En posts anteriores vimos como las representaciones distribuidas permiten extraer mucha información de las palabras y mejorar el rendimiento de las aplicaciones de procesamiento de lenguaje natural. Uno de los modelos más usados es Word2vec, creado en 2013 por Tomas Mikolov en Google, que se basa en redes neuronales de varias capas y tiene dos... Seguir leyendo →